Delta Publications

Publications

Publications resulting from research conducted using Delta appear here. Check back to see how the list of exciting discoveries made using Delta grows.

If you have a publication that should be listed here and isn’t, please share your success with us!​

1.
Richards, C., Dima, A., Ferguson, D. & Witek, H. Growing black-hole hair in nonminimally coupled biscalar gravity. Preprint at https://doi.org/10.48550/ARXIV.2501.14034 (2025).
1.
Osorio, J. et al. Keep it Local: Comparing Domain-Specific LLMs in Native and Machine Translated Text using Parallel Corpora on Political Conflict. in 2024 2nd International Conference on Foundation and Large Language Models (FLLM) 542–552 (IEEE, Dubai, United Arab Emirates, 2024). http://doi.org/10.1109/FLLM63129.2024.10852489.
1.
Avdiunina, P., Jamal, S., Gusev, F. & Isayev, O. All that glitters is not gold: Importance of rigorous evaluation of proteochemometric models. Preprint at https://doi.org/10.26434/chemrxiv-2025-vbmgc (2025).
1.
Pilny, A., Bonito, J. & Schecter, A. Coding Small Group Communication with AI: RNNs and Transformers with Context. Small Group Research 10464964251314196 (2025) http://doi.org/10.1177/10464964251314197.
1.
Deng, J. et al. $\texttt{dattri}$: A Library for Efficient Data Attribution. Preprint at https://doi.org/10.48550/ARXIV.2410.04555 (2024).
1.
Chen, W., Yan, B., Chen, C.-C. & Watanabe, S. Floras 50: A Massively Multilingual Multitask Benchmark for Long-Form Conversational Speech. in 2024 IEEE Spoken Language Technology Workshop (SLT) 891–898 (IEEE, Macao, 2024). http://doi.org/10.1109/SLT61566.2024.10832167.
1.
Nakamura, T. et al. Discrete Speech Unit Extraction via Independent Component Analysis. Preprint at https://doi.org/10.48550/ARXIV.2501.06562 (2025).
1.
Khot, A., Wang, X., Roy, A., Kindratenko, V. & Neubauer, M. S. Evidential Deep Learning for Uncertainty Quantification and Out-of-Distribution Detection in Jet Identification using Deep Neural Networks. Preprint at https://doi.org/10.48550/ARXIV.2501.05656 (2025).
1.
Andrews, J., Weirich, K. & Schiller, U. D. Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets. J. Phys. Chem. B 129, 1109–1121 (2025).
1.
Wang, S. et al. Deep CNN-based semi-supervised learning approach for identifying and segmenting corrosion in hydraulic steel and water resources infrastructure. Structural Health Monitoring 14759217241305040 (2025) http://doi.org/10.1177/14759217241305039.
1.
Feng, J. T., Satheesan, S. P., Kong, S., Donders, T. H. & Punyasena, S. W. Addressing the open world: detecting and segmenting pollen on palynological slides with deep learning. Preprint at https://doi.org/10.1101/2025.01.05.631390 (2025).
1.
Vatansever, D. & Levin, D. Collisionless Plasma Plume Expansion Under External Magnetic Fields. (2025).
1.
Wu, Y. et al. Enhancing Audiovisual Speech Recognition through Bifocal Preference Optimization. Preprint at https://doi.org/10.48550/ARXIV.2412.19005 (2024).
1.
Imam, I. A. et al. Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides. Langmuir 41, 811–821 (2025).
1.
Kobayashi, K. & Alam, S. B. Physics-regularized neural networks for predictive modeling of silicon carbide swelling with limited experimental data. Sci Rep 14, 30666 (2024).
1.
Hassan, U., Zhu, J., Chen, D. & Cheung, S.-C. S. DPGEM: Differentially Private Generative Model with Exponential Mechanism. in 2024 IEEE International Workshop on Information Forensics and Security (WIFS) 1–6 (IEEE, Rome, Italy, 2024). http://doi.org/10.1109/WIFS61860.2024.10810705.
1.
Padmanabha, G. A., Safta, C., Bouklas, N. & Jones, R. E. Condensed Stein Variational Gradient Descent for Uncertainty Quantification of Neural Networks. Preprint at https://doi.org/10.48550/ARXIV.2412.16462 (2024).
1.
Brandt, P. T. et al. ConfliBERT: A Language Model for Political Conflict. Preprint at https://doi.org/10.48550/ARXIV.2412.15060 (2024).
1.
Modesitt, E., Yang, K., Hulsey, S., Zhai, C. & Kindratenko, V. ORBIT: Cost-Effective Dataset Curation for Large Language Model Domain Adaptation with an Astronomy Case Study. Preprint at https://doi.org/10.48550/ARXIV.2412.14436 (2024).
1.
Xu, Z., Yan, J., Gupta, A. & Srikumar, V. State Space Models are Strong Text Rerankers. Preprint at https://doi.org/10.48550/ARXIV.2412.14354 (2024).
1.
Fukami, K. & Taira, K. Single-snapshot machine learning for super-resolution of turbulence. (2024) http://doi.org/10.48550/ARXIV.2409.04923.
1.
Kacmaz, S., Haas, R. & Huerta, E. A. Machine learning-driven conservative-to-primitive conversion in hybrid piecewise polytropic and tabulated equations of state. Preprint at https://doi.org/10.48550/ARXIV.2412.07836 (2024).
1.
Mark, M. S. et al. Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone. Preprint at https://doi.org/10.48550/ARXIV.2412.06685 (2024).
1.
Kim, Y., Most, E. R., Beloborodov, A. M. & Ripperda, B. Black hole pulsars and monster shocks as outcomes of black hole-neutron star mergers. Preprint at https://doi.org/10.48550/ARXIV.2412.05760 (2024).
1.
Chen, P. et al. Learning a Filtered Backprojection Reconstruction Method for Photoacoustic Computed Tomography with Hemispherical Measurement Geometries. Preprint at https://doi.org/10.48550/ARXIV.2412.01971 (2024).
1.
Kobayashi, K., Ahmed, F. & Alam, S. B. Virtual Sensing to Enable Real-Time Monitoring of Inaccessible Locations \& Unmeasurable Parameters. Preprint at https://doi.org/10.48550/ARXIV.2412.00107 (2024).
1.
Prakash, A., Chang, M., Jin, M., Tu, R. & Gupta, S. 3D Reconstruction of Objects in Hands without Real World 3D Supervision. Preprint at https://doi.org/10.48550/ARXIV.2305.03036 (2023).
1.
Abbasi, S. & Mehdizadeh, A. On the interplay between fluid flow characteristics and small particle deposition in turbulent wall bounded flows. Physics of Fluids 36, 113305 (2024).
1.
You, D. et al. Inverse design of short-range order arrangement via neural network. International Journal of Solids and Structures 113175 (2024) http://doi.org/10.1016/j.ijsolstr.2024.113175.
1.
Sharma, A., Ding, H., Li, J., Dani, N. & Zhang, M. MiniKV: Pushing the Limits of LLM Inference via 2-Bit Layer-Discriminative KV Cache. Preprint at https://doi.org/10.48550/ARXIV.2411.18077 (2024).
1.
Rao, R., Chandrasekar, K. & Kale, L. An Adaptive Asynchronous Approach for the Single-Source Shortest Paths Problem. in IA^3 2024 - 14th Workshop on Irregular Applications: Architectures & Algorithms (Atlanta, Georgia, 2024). http://doi.org/10.1109/SCW63240.2024.00097.
1.
Abedsoltan, A., Ma, S., Pandit, P. & Belkin, M. Fast training of large kernel models with delayed projections. Preprint at https://doi.org/10.48550/ARXIV.2411.16658 (2024).
1.
Chau, T. N., Wang, X., McDowell, J. M. & Li, S. Advancing plant single-cell genomics with foundation models. Current Opinion in Plant Biology 82, 102666 (2024).
1.
Kim, Y.-J., Waegel, A., Hakkarainen, M., Yi, Y. K. & Braham, W. Understanding HVAC system runtime of U.S. homes: An energy signature analysis using smart thermostat data. Build. Simul. (2024) http://doi.org/10.1007/s12273-024-1203-9.
1.
Dhruv, V., Prather, B., Wong, G. & Gammie, C. F. A Survey of General Relativistic Magnetohydrodynamic Models for Black Hole Accretion Systems. Preprint at https://doi.org/10.48550/ARXIV.2411.12647 (2024).
1.
Kasirajan, V., Battelle, T. & Wold, B. Empowering Large Scale Quantum Circuit Development: Effective Simulation of Sycamore Circuits. Preprint at https://doi.org/10.48550/ARXIV.2411.12131 (2024).
1.
Griebel, S. et al. Locating the Leading Edge of cultural Change. in (Aarhus, Denmark, 2024).
1.
Liu, Z. et al. Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions. Preprint at https://doi.org/10.26434/chemrxiv-2024-dtq6q (2024).
1.
Schmaltz, T., Hu, Y. & Lazarian, A. Estimate Sonic Mach Number in the Interstellar Medium with Convolutional Neural Network. Preprint at http://arxiv.org/abs/2411.11157 (2024).
1.
Roze, L. V. et al. Increasing thermostability of the key photorespiratory enzyme glycerate 3‐kinase by structure‐based recombination. Plant Biotechnology Journal pbi.14508 (2024) http://doi.org/10.1111/pbi.14508.
1.
Liu, H. et al. Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis. Preprint at https://doi.org/10.48550/ARXIV.2406.08627 (2024).
1.
Liu, H., Liu, C. & Prakash, B. A. A Picture is Worth A Thousand Numbers: Enabling LLMs Reason about Time Series via Visualization. Preprint at https://doi.org/10.48550/ARXIV.2411.06018 (2024).
1.
Yang, B. et al. Engineering the Mechanical Stability of a Therapeutic Complex between Affibody and Programmed Death-Ligand 1 by Anchor Point Selection. ACS Nano 18, 31912–31922 (2024).
1.
Nguyen, T.-D., Zhang, C., Gitbumrungsin, M., Raheja, A. & Chen, T. Remote Kinematic Analysis for Mobility Scooter Riders Leveraging Edge AI. AAAI-SS 4, 314–318 (2024).
1.
Chandrasekar, K. & Kale, L. Shared Memory-Aware Latency-Sensitive Message Aggregation for Fine-Grained Communication. Preprint at https://doi.org/10.48550/ARXIV.2411.03533 (2024).
1.
Li, X., Dai, Y. & Qu, Q. Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure. Preprint at https://doi.org/10.48550/ARXIV.2410.24060 (2024).
1.
Kazemi, A., Fatima, Q. ul ain, Kindratenko, V. & Tessum, C. AIDOVECL: AI-generated Dataset of Outpainted Vehicles for Eye-level Classification and Localization. Preprint at https://doi.org/10.48550/ARXIV.2410.24116 (2024).
1.
Liu, Q. et al. Univariate Conditional Variational Autoencoder for Morphogenic Patterns Design in Frontal Polymerization-Based Manufacturing. Preprint at https://doi.org/10.48550/ARXIV.2410.17518 (2024).
1.
Hossain, R. B. et al. Virtual Sensing for Real-Time Degradation Monitoring of Nuclear Systems: Leveraging DeepONet for Enhanced Sensing Coverage for Digital Twin-Enabling Technology. Preprint at https://doi.org/10.48550/ARXIV.2410.13762 (2024).
1.
Chen, Z. et al. Retrospective Learning from Interactions. Preprint at https://doi.org/10.48550/ARXIV.2410.13852 (2024).